Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A.

نویسندگان

  • Akihiro Ohyama
  • Kohei Hosaka
  • Yoshiaki Komiya
  • Kimio Akagawa
  • Emiko Yamauchi
  • Hisaaki Taniguchi
  • Nobuyuki Sasagawa
  • Konosuke Kumakura
  • Sumiko Mochida
  • Takashi Yamauchi
  • Michihiro Igarashi
چکیده

Syntaxin 1A/HPC-1 is a key component of the exocytotic molecular machinery, namely, the soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor mechanism. Although >10 syntaxin-binding proteins have been identified, they cannot completely explain the regulation of exocytosis. Thus, novel proteins may interact with syntaxin. Because exocytosis requires both Ca2+ and ATP, we searched for Ca2+/ATP-dependent syntaxin-binding proteins from the rat brain and discovered Ca2+/calmodulin-activated protein kinase II (CaMKII)-alpha. At Ca2+ concentrations of >10(-6) m, only autophosphorylated CaMKII bound to syntaxin. Bound CaMKII was released from syntaxin by EGTA or by phosphatase, indicating that the binding is reversible. CaMKII bound to the linker domain of syntaxin, unlike any other known syntaxin-binding proteins. CaMKII-syntaxin complexes were also detected in synaptosomes by immunoprecipitation, and when reconstituted in vitro, they recruited larger amounts of synaptotagmin and SNAP-25 than syntaxin alone. The microinjected CaMKII-binding domain of syntaxin specifically affected exocytosis in chromaffin cells and in neurons. These results indicate that the Ca2+/ATP-dependent binding of CaMKII to syntaxin is an important process in the regulation of exocytosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A.

Myosin-Va is an actin-based processive motor that conveys intracellular cargoes. Synaptic vesicles are one of the most important cargoes for myosin-Va, but the role of mammalian myosin-Va in secretion is less clear than for its yeast homologue, Myo2p. In the current studies, we show that myosin-Va on synaptic vesicles interacts with syntaxin-1A, a t-SNARE involved in exocytosis, at or above 0.3...

متن کامل

Phosphorylation-dependent reversible association of Ca2+/calmodulin-dependent protein kinase II with the postsynaptic densities.

The association of soluble Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) with postsynaptic densities (PSDs) was determined by activity assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunoblotting of the enzyme. Soluble CaM kinase II was autophosphorylated with ATP in the presence of Ca2+ and calmodulin, and then it was incubated with PSDs. Autophosphorylate...

متن کامل

Activation of type II calcium/calmodulin-dependent protein kinase by Ca2+/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain.

It is now well established that autophosphorylation of a threonine residue located next to each calmodulin-binding domain in the subunits of type II Ca2+/calmodulin-dependent protein kinase causes the kinase to remain active, although at a reduced rate, after Ca2+ is removed from the reaction. This autophosphorylated form of the kinase is still sensitive to Ca2+/calmodulin, which is required fo...

متن کامل

Molecular aspects of rapid, reversible, Ca2+-dependent de-phosphorylation of pp63/parafusin during stimulated exo-endocytosis in Paramecium cells.

Ca2+ signalling governs stimulated exocytosis and exocytosis-coupled endocytosis also in Paramecium cells. Upon stimulation, the < or =10(3) dense-core exocytotic organelles (trichocysts) can be synchronously (80 ms) released, followed by endocytotic membrane resealing (350 ms) and retrieval. Paramecium is the most synchronous dense-core exocytotic system known, allowing to dissect rapidly reve...

متن کامل

Cross talk between β subunits, intracellular Ca2+ signaling, and SNAREs in the modulation of CaV2.1 channel steady‐state inactivation

Modulation of CaV 2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII-III) of the CaV 2.1 pore-forming α1A subunit to optimize neurotransmitter release from presynaptic terminals by allowing secretory vesicles docking near the Ca2+ entry pathway, and by modulating the vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 9  شماره 

صفحات  -

تاریخ انتشار 2002